## Rent

## Lectures 1-5

## Course Name:

## Instructor Name:

## Description of the course:

The textbook:

Grading:

## Analytical Mechanics Phys 252

Dr. Hala A Al-Jawhari Room No. (108/C).
The material covered in this course is concerned with Newton's laws of motion and their applications to linear motion, harmonic oscillator, and inertial forces,

## Analytical Mechanics

by G.R. Fowles \& G.R. Cassiday. 7th ed.

| H.W | $10 \%$ | On each tutorial session |
| :---: | :---: | :---: |
| Quiz | $10 \%$ | After each tutorial <br> session |
| $1^{\text {st }}$ EXAM | $20 \%$ | week 7 <br> $25 / 4 / 1431 \mathrm{H}$ |
| $2^{\text {nd }}$ EXAM | $20 \%$ | week 12 <br> $8 / 6 / 1431 ~ H$ |
| FINAL <br> EXAM | $40 \%$ | End of the semester |

## Basic Definitions

## What is

 Mechanics?Classical Mechanics:

Mechanics is the science of motion, which is a change in the position of a body with respect to time. It studies the interactions between a moving body and the forces acting on it. Hence:

Is the science Deals with the motion of objects through absolute space \& time in the Newtonian sense.


## Basic Definitions

## The Coordinate System:

In order to define the position of a body in space, it is necessary to have a reference system. In mechanics we use a coordinate system. The basic type of coordi-nate system is the Cartesian or rectangular coordinate system. The position of a point in such system is specified by three numbers or coordinates, $\mathbf{x}, \mathbf{y}$, and $\mathbf{z}$. In case of a moving point, the coordinates change with time; that is, $\mathbf{x}, \mathbf{y}$, and $\mathbf{z}$ are functions of the quantity $t$.



The particle (or mass point):

Physical
Quantities:

Basic Units in (SI System):

The particle is a thing that has mass but does not have spatial extension. It is an approximation of a very small body, or one whose size is relatively unimportant in a particular discussion. The earth, for example, might be treated as a particle in Celestial mechanics.

The observational data of physics are expressed in terms of certain fundamental entities called physical quantities, for example; energy, time, force, and so on. It has been found that it is possible to define all of the physical quantities of mechanics in terms of three basic ones, namely length, time and mass.


3- kilogram (kg).


2- second (s).


## Dimensions:

Dimensional
Analysis:
I.e.

| Factor | $10^{9}$ | $10^{6}$ | $10^{3}$ | $10^{-2}$ | $10^{-3}$ | $10^{-6}$ | $10^{-9}$ | $10^{-12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prefix | Giga- | Mega- | Kilo- | Centi- | Milli- | Micro- | Nano- | Pico- |
| Symbol | $\mathbf{G}$ | $\mathbf{M}$ | $\mathbf{K}$ | $\mathbf{c}$ | $\mathbf{m}$ | $\boldsymbol{\mu}$ | $\mathbf{n}$ | $\mathbf{p}$ |

The dimension of any physical quantity can be written as $[\mathrm{M}]^{\alpha}[\mathrm{LL}]^{\beta}[\mathrm{T}]^{\gamma}$ where $\alpha, \beta$, and $\gamma$ are powers of their respective dimension. For example, the dimension of acceleration $\mathbf{a}$ is

$$
a=\left[\frac{L / T}{T}\right]=[L][T]^{-2}
$$

1- Dimensional analysis is a powerful tool that can be used to determine whether the result of a calculation has even the possibility of being correct or not.
the dimensions on the LHS = the dimension of all physical quantities on the RHS.

Dimensional
Analysis:

## Example:

2- Dimensional analysis can also be used as to obtain a rough relationship between physical quantities.

Consider the simple pendulum; that consists of a small mass $m$ attached to the end of a massless string of length $l$.

## The question now is:

In the absence of friction, air resistance and all other dissipative forces, how does the pendulum period $\tau$ depend on any physical parameters that characterize the pendulum?

Let assume that $\quad \tau \propto m^{\alpha} l^{\beta} g^{\gamma}$
whose dimensional relationship must be

$$
[\mathrm{T}]^{1}=[\mathrm{M}]^{\alpha}[\mathrm{L}]^{\beta}\left([\mathrm{L}]^{\gamma}[\mathrm{T}]^{-2 \gamma}\right)
$$

Matching the dimensions of RHS with LHS we find that; $\alpha=0, \gamma=-1 / 2$ and, $\beta+\gamma=0$, or $\beta=1 / 2$.
Thus, we conclude that

$$
\tau \propto \sqrt{\frac{l}{g}}
$$

## Vectors

## Vectors \& Scalars


$\square$ A scalar can be completely defined by magnitude.
$\square$ Examples: mass, density, volume, and energy.
$\square$ Its value is independent of any chosen coordinates.

Mathematically, scalars obey the normal algebraic rules of addition, multiplication ...etc.
$\square$ A vector needs both magnitude and direction to be defined.
$\square$ Examples: displacement, velocity, acceleration, and force.
$\square$ Its value is coordinate system dependent.
$\square$ Mathematically, vectors need a special treatment known as Vectors Algebra.

## Vector Algebra

How to define a Vector?

A given vector A can be specified either by:
Its magnitude ( $A$ ) and its direction ( $\phi$ ) relative to some chosen coordinate system.


The set of its components, or projections onto the coordinate axes ; Since

$$
\begin{aligned}
A=|A|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} & \text { The magnitude } \\
\phi=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right) & \text { The direction }
\end{aligned}
$$

The vector $\mathbf{O}=(0,0,0)$ is called the null vector.

## Vector Addition:

The Unit Vectors:

The addition of two vectors is defined by the equation:

$$
\mathbf{A}+\mathbf{B}=\left(A_{x}+B_{x}, A_{y}+B_{y}, A_{z}+B_{z}\right)
$$

Note that:

$$
\begin{array}{cc}
\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A} & \\
\text { Commutative Law } \\
\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C} & \\
\text { Associative Law }
\end{array}
$$

A unit vector is a vector whose magnitude is unity. Unit vectors are often assigned by the symbol e, The three unit vectors
$\mathbf{e}_{\mathrm{x}}=(1,0,0) \quad \mathbf{e}_{\mathrm{y}}=(0,1,0) \quad \mathbf{e}_{\mathrm{z}}=(0,0,1)$
for Cartesian coordinates
$\mathbf{e}_{\mathrm{x}}=\mathbf{i} \quad \mathbf{e}_{\mathrm{y}}=\mathbf{j} \quad \mathbf{e}_{\mathrm{z}}=\mathbf{k}$


Given two vectors A and B, the scalar or "dot "product, A.B is the scalar defined by the equation

$$
\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

Main properties of the scalar product:
$\square$ It is commutative, $\quad$ A.B $=\mathbf{B} . \mathbf{A}$
$\square$ It is distributive, $\quad \mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}$
$\square$ It is a scalar. If vector $\mathbf{A}$ is expressed as $(A, 0,0)$ and the vector $\mathbf{B}$ as $(B \cos \theta, B \sin \theta, 0)$, then,

$$
\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}=A(B \cos \theta)=|\mathbf{A}||\mathbf{B}| \cos \theta
$$

$\square$ Hence, The geometrical interpretation of $\mathbf{A} . \mathbf{B}$ is that it is the projection of $\mathbf{B}$ onto $\mathbf{A}$ times the length of $\mathbf{A}$.
$\square$ If $\mathbf{A} . \mathbf{B}=0$, and neither $\mathbf{A}$ nor $\mathbf{B}$ is null, then $(\cos \theta=0)$ and $\mathbf{A}$ is $\perp$ to $\mathbf{B}$.

Similarly;

$$
\begin{aligned}
& \mathbf{i . i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1 \\
& \mathbf{i} . \mathbf{j}=\mathbf{j} . \mathbf{k}=\mathbf{k} . \mathbf{i}=0
\end{aligned}
$$



## The Vector Product

Given two vectors A and B, the vector or "cross" product, $\mathbf{A} \times \mathbf{B}$ is a vector whose components are given by the equation

$$
\mathbf{A} \times \mathbf{B}=\left(A_{y} B_{z}-A_{z} B_{y}, \quad A_{z} B_{x}-A_{x} B_{z}, \quad A_{x} B_{y}-A_{y} B_{x}\right)
$$

which is equal to the determinant,

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Main properties of the vector product:
$\square$ It is anti-commutative, $\quad \mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}$
$\square$ It is distributive, $\quad \mathbf{A} \times(\mathbf{B}+\mathbf{C})=\mathbf{A} \times \mathbf{B}+\mathbf{A} \times \mathbf{C}$
$\square$ the resultant is a vector. Its magnitude is given by;

$$
|\mathbf{A} \times \mathbf{B}|=|\mathrm{A}||\mathrm{B}| \sin \theta
$$

where $\theta$ is the smallest angle between $\mathbf{A}$ and $\mathbf{B}$.

## The Vector <br> Product

$\square$ The direction of the resultant vector is $\perp$ to the plane containing $\mathbf{A}$ and $\mathbf{B}$.

Hence,

$$
\mathbf{A} \times \mathbf{B}=(\mathrm{AB} \sin \theta) \mathbf{n}
$$

where $\mathbf{n}$ is a unit vector normal to the plane containing $\mathbf{A}$ and $\mathbf{B}$. The sense of $\mathbf{n}$ is given by the right -hand rule.

Therefore,
Ax
$\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\mathbf{0}$
$\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathrm{k}=\mathbf{i}, \quad k \times i=j$


The cross product $\mathbf{A} \times \mathbf{B}$ has
1- A magnitude of $A B \sin \theta$ which is equal to the area of the parallelogram with sides $\mathbf{A}$ and $\mathbf{B}$ shown by the shaded area in the Figure.
2- A direction $\perp$ to the plane containing $\mathbf{A}$ and $\mathbf{B}$.

## Triple Products

The expression

$$
\mathbf{A .}(\mathbf{B} \times \mathbf{C})=\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
$$

represents the scalar triple product of A, B and $\mathbf{C}$. While, the expression

$$
\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} . \mathbf{C})-\mathbf{C}(\mathbf{A} . \mathbf{B})
$$

represents the vector triple product of A, B and C. It can be remembered easily as the "back minus cab" rule.

## Derivative of a vector

## Examples:

Previously we were concerned mainly with vector algebra. Now, we will begin to study the calculus of vectors and its use in the description of the motion of particles.

Consider a vector $\mathbf{A}$, whose components are functions of a single variable $u$ which is usually the time $t$, i.e,

$$
\mathbf{A}(\mathrm{u})=\mathbf{i} A_{x}(\mathrm{u})+\mathbf{j} A_{y}(\mathrm{u})+\mathbf{k} A_{z}(\mathrm{u})
$$

The derivative of $\mathbf{A}$ with respect to $u$ is defined by

$$
\frac{d \mathbf{A}}{d u}=\mathbf{i} \frac{d A_{x}}{d u}+\mathbf{j} \frac{d A_{y}}{d u}+\mathbf{k} \frac{d A_{z}}{d u}
$$

$$
\begin{array}{ll}
\frac{d}{d u}(\mathbf{A}+\mathbf{B})=\frac{d \mathbf{A}}{d u}+\frac{d \mathbf{B}}{d u} & \frac{d}{d u}(\mathbf{A} \cdot \mathbf{B})=\frac{d \mathbf{A}}{d u} \cdot \mathbf{B}+\mathbf{A} \cdot \frac{d \mathbf{B}}{d u} \\
\frac{d}{d u}(n \mathbf{A})=\frac{d n}{d u} \mathbf{A}+n \frac{d \mathbf{A}}{d u} & \frac{d}{d u}(\mathbf{A} \times \mathbf{B})=\frac{d \mathbf{A}}{d u} \times \mathbf{B}+\mathbf{A} \times \frac{d \mathbf{B}}{d u}
\end{array}
$$

Notice that it is necessary to maintain the order of the terms in the derivative of the cross product.

## The position

 vector
## The velocity

 vector
## Velocity \& Acceleration In rectangular coordinates

In a given reference system, the position of a particle can be specified by a single vector. This vector is called the position vector of the particle.
In rectangular coordinates, the position vector is simply

$$
\mathbf{r}=\mathbf{i} x+\mathbf{j} y+\mathbf{k} z
$$

For a moving particle, these components are functions of the time. The time derivative of $r$ is called the velocity, ( $\mathbf{v}$ ), which is given by;

$$
\mathbf{v}=\frac{d \mathbf{r}}{d t}=\mathbf{i} \dot{x}+\mathbf{j} \dot{y}+\mathbf{k} \dot{z}
$$

The vector dr/dt expresses both the direction and the rate of motion. As $\Delta \mathrm{t}$ approaches zero, the point $\mathrm{P}^{\prime}$ approaches P , and the direction of the vector $\Delta \mathbf{r} / \Delta \mathrm{t}$ approaches the direction of the tangent to the path at P , which is $\mathrm{d} \mathbf{r} / \mathrm{dt}$.


The velocity vector is always tangent to the path of motion.

The magnitude of the velocity is called the speed (v). In rectangular components the speed is just

$$
v=\frac{d s}{d t}=|\mathbf{v}|=\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)^{1 / 2}
$$

where $s$ is the distance.

The acceleration vector

The time derivative of the velocity is called the acceleration (a). Hence;

$$
\mathbf{a}=\frac{d \mathbf{v}}{d t}=\frac{d^{2} \mathbf{r}}{d t^{2}}=\mathbf{i} \ddot{x}+\mathbf{j} \ddot{y}+\mathbf{k} \ddot{z}
$$



| The position vector | $\mathrm{r}=\mathrm{i} b t+\mathrm{j}\left(c t-\frac{g t^{2}}{2}\right)$ |
| :---: | :---: |
| The velocity | $\mathbf{v}=\mathbf{i} b+\mathbf{j}(c-g t)$ |
| The acceleration | $\mathbf{a}=-\mathbf{j} g$ |
| The path | Parabola |

## $\operatorname{Exp}(1-10-2):$

Circular Motion

\(\left.\begin{array}{|c|c|}\hline The position vector \& \mathbf{r}=\mathbf{i} b \cos \omega t+\mathbf{j} b \sin \omega t <br>
\hline The velocity \& \mathbf{v}=-\mathbf{i} b \omega \sin \omega t+\mathbf{j} b \omega \cos \omega t <br>
\hline The acceleration \& \mathbf{a}=-\mathbf{i} b \omega^{2} \cos \omega t-\mathbf{j} b \omega^{2} \sin \omega t <br>

\mathbf{a}=-\omega^{2} \mathbf{r}\end{array}\right]\)| Circle |  |
| :---: | :---: |
| The path |  |



## Velocity \& Acceleration in Plane Polar Coordinates

The position vector

The velocity vector

To express the position of a particle moving in a plane, it is often convenient to use polar coordinates $: r, \theta$.
Using Vectors, the position of the particle can be written as the product of the radial distance $r$ by a unit radial vector $\mathbf{e}_{\mathrm{r}}$ :

$$
\mathbf{r}=\mathrm{r} \mathbf{e}_{\mathrm{r}}
$$



$$
\mathbf{v}=\frac{d \mathbf{r}}{d t}=\dot{r} \mathbf{e}_{r}+r \frac{d \mathbf{e}_{r}}{d t}
$$

A study of the figure shows that;

$$
\begin{array}{rlr}
\Delta \mathbf{e}_{\mathrm{r}} \cong\left|\Delta \mathbf{e}_{\mathrm{r}}\right| \mathbf{e}_{\theta} & \Delta \mathbf{e}_{\theta} \cong-\left|\Delta \mathbf{e}_{\theta}\right| \mathbf{e}_{\mathrm{r}} \\
\cong\left|\mathbf{e}_{\mathbf{r}}\right| \Delta \theta \mathbf{e}_{\theta} & \cong-\left|\mathbf{e}_{\theta}\right| \Delta \theta \mathbf{e}_{\mathrm{r}} \\
\cong \Delta \theta \mathbf{e}_{\theta} & \cong-\Delta \theta \mathbf{e}_{\mathrm{r}} &
\end{array}
$$




Dividing by $\Delta \mathrm{t}$ and taking the limit gives; $\quad \frac{d \mathbf{e}_{r}}{d t}=\mathbf{e}_{\theta} \frac{d \theta}{d t}$
Similarly; $\quad \frac{d \mathbf{e}_{\theta}}{d t}=-\mathbf{e}_{r} \frac{d \theta}{d t}$

Hence,

the radial component
the transverse component

## The acceleration vector

To find the acceleration vector, we take the derivative of the velocity with respect to time. This gives

| vector |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Note: | Path | r | $\theta$ | dr/dt | $\mathrm{d} \theta / \mathrm{dt}$ | $\mathrm{a}_{\mathrm{r}}$ | $\mathrm{a}_{\theta}$ |
|  | Circle | const. <br> (b) | vari. | 0 | $\dot{\theta}$ | $\begin{gathered} b \dot{\theta}^{2} \\ \text { toward the center } \end{gathered}$ | $\begin{aligned} & b \ddot{\theta} \\ & \perp \mathbf{r} \end{aligned}$ |
|  | Radial line | vari. | const. | $\dot{r}$ | 0 | $\ddot{r}$ | 0 |

## Converting between Polar \& Cartesian

 coordinate systemsPolar to Cartesian Conversion Formulas

Cartesian to Polar Conversion Formulas

$$
x=r \cos \theta \quad y=r \sin \theta
$$

$$
r=\sqrt{x^{2}+y^{2}} \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

A- Convert $\left(-4, \frac{2 \pi}{3}\right)$ into Cartesian coordinates.
B- Convert ( $-1,-1$ ) into Polar coordinates.

## Solution

A-

$$
\begin{aligned}
& x=-4 \cos \left(\frac{2 \pi}{3}\right)=-4\left(-\frac{1}{2}\right)=2 \\
& y=-4 \sin \left(\frac{2 \pi}{3}\right)=-4\left(\frac{\sqrt{3}}{2}\right)=-2 \sqrt{3}
\end{aligned}
$$

So, in Cartesian coordinates this point is $(2,-2 \sqrt{3})$
B- $\quad r=\sqrt{(-1)^{2}+(-1)^{2}}=\sqrt{2}$

$$
\theta=\tan ^{-1}\left(\frac{-1}{-1}\right)=\tan ^{-1}(1)=\frac{\pi}{4} \Longrightarrow \theta=\frac{\pi}{4}+\pi=\frac{5 \pi}{4}
$$

So, in Polar coordinates this point is $\left(\sqrt{2}, \frac{5 \pi}{4}\right)$


Convert each of the following into an equation in the given coordinate system

A- $2 x-5 x^{3}=1+x y$ into polar coordinates.
B- $r=-8 \cos \theta$ into Cartesian coordinates

## Solution

A- $2(r \cos \theta)-5(r \cos \theta)^{3}=1+(r \cos \theta)(r \sin \theta)$
$2 r \cos \theta-5 r^{3} \cos ^{3} \theta=1+r^{2} \cos \theta \sin \theta$

B- $\quad r^{2}=-8 r \cos \theta$
$\Longrightarrow \quad x^{2}+y^{2}=-8 x$

## Velocity \& Acceleration in Cylindrical Coordinates

The position vector

The velocity vector

The acceleration vector

The position vector of a particle can be described in cylindrical coordinates ( $R, \phi, z$ ) as

$$
\mathbf{r}=\mathrm{Re}_{R}+\mathrm{z} \mathbf{e}_{z}
$$

In view of the facts that

$$
\frac{d \mathbf{e}_{R}}{d t}=\dot{\phi} \mathbf{e}_{\phi} \quad, \frac{d \mathbf{e}_{\phi}}{d t}=-\dot{\phi} \mathbf{e}_{R} \quad \text { and } \quad \frac{d \mathbf{e}_{z}}{d t}=0
$$

The velocity and acceleration vectors can be given by the following equations:

$$
\mathbf{v}=\dot{R} \mathbf{e}_{R}+R \dot{\phi} \mathbf{e}_{\phi}+\dot{z} \mathbf{e}_{z}
$$

$$
\mathbf{a}=\left(\ddot{R}-R \dot{\phi}^{2}\right) \mathbf{e}_{R}+(R \ddot{\phi}+2 \dot{R} \dot{\phi}) \mathbf{e}_{\phi}+\ddot{z} \mathbf{e}_{z}
$$

## Converting between Cylindrical \& Cartesian

 coordinate systems

## Velocity \& Acceleration in Spherical Coordinates

The position vector

Note yhat;
$r \geq 0$
$0^{\circ} \leq \theta \leq 180^{\circ}(\pi \mathrm{rad})$
$0^{\circ} \leq \varphi<360^{\circ}(2 \pi \mathrm{rad})$

Because any vector can be expressed in terms of its projections onto the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes as;
$\mathbf{e}_{r}=\mathbf{i}(\sin \theta \cos \phi)+\mathbf{j}(\sin \theta \sin \phi)+\mathbf{k}(\cos \theta)$
$\mathbf{e}_{\theta}=\mathbf{i}(\cos \theta \sin \phi)+\mathbf{j}(\cos \theta \sin \phi)-\mathbf{k}(\sin \theta)$
$\mathbf{e}_{\phi}=-\mathbf{i}(\sin \phi)+\mathbf{j}(\cos \phi)$

$$
\mathbf{r}=\mathrm{r} \mathbf{e}_{r}
$$

The position vector of a particle can be described in Spherical coordinates ( $r, \theta, \phi$ ) as


The velocity and acceleration vectors can be given as the following:

The velocity vector

The acceleration vector

## Spherical to Cartesian

 Conversion FormulasCartesian to Spherical Conversion Formulas

$$
\mathbf{v}=\dot{r} \mathbf{e}_{r}+r \dot{\phi} \sin \theta \mathbf{e}_{\phi}+r \dot{\theta} \mathbf{e}_{\theta}
$$

$$
\begin{aligned}
\mathbf{a}= & \left(\ddot{r}-r \dot{\theta}^{2}-r \phi^{2} \sin ^{2} \theta\right) \mathbf{e}_{r}+\left(r \ddot{\theta}+2 \dot{r} \dot{\theta}-r \dot{\phi}^{2} \sin \theta \cos \theta\right) \mathbf{e}_{\theta} \\
& +(r \ddot{\phi} \sin \theta+2 \dot{r} \dot{\phi} \sin \theta+2 r \dot{\theta} \dot{\phi} \cos \theta) \mathbf{e}_{\phi}
\end{aligned}
$$

## Converting between Spherical \& Cartesian

 coordinate systems$$
x=r \sin \theta \cos \phi \quad y=r \sin \theta \cos \theta \quad z=r \cos \theta
$$

$$
r=\sqrt{x^{2}+y^{2}+z^{2}} \quad \theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \quad \phi=\tan ^{-1}\left(\frac{y}{x}\right)
$$

